Anti-Inflammatory Role of MicroRNA-146a in the Pathogenesis of Diabetic Nephropathy

MicroRNA-146a 在糖尿病肾病发病机制中的抗炎作用

阅读:5
作者:Kirti Bhatt, Linda L Lanting, Ye Jia, Sailee Yadav, Marpadga A Reddy, Nathaniel Magilnick, Mark Boldin, Rama Natarajan

Abstract

Inflammation has a critical role in the pathogenesis of diabetic complications, including diabetic nephropathy (DN). MicroRNAs have recently emerged as important regulators of DN. However, the role of microRNAs in the regulation of inflammation during DN is poorly understood. Here, we examined the in vivo role of microRNA-146a (miR-146a), a known anti-inflammatory microRNA, in the pathogenesis of DN. In a model of streptozotocin-induced diabetes, miR-146a(-/-) mice showed significantly exacerbated proteinuria, renal macrophage infiltration, glomerular hypertrophy, and fibrosis relative to the respective levels in control wild-type mice. Diabetes-induced upregulation of proinflammatory and profibrotic genes was significantly greater in the kidneys of miR-146a(-/-) than in the kidneys of wild-type mice. Notably, miR-146a expression increased in both peritoneal and intrarenal macrophages in diabetic wild-type mice. Mechanistically, miR-146a deficiency during diabetes led to increased expression of M1 activation markers and suppression of M2 markers in macrophages. Concomitant with increased expression of proinflammatory cytokines, such as IL-1β and IL-18, markers of inflammasome activation also increased in the macrophages of diabetic miR-146a(-/-) mice. These studies suggest that in early DN, miR-146a upregulation exerts a protective effect by downregulating target inflammation-related genes, resulting in suppression of proinflammatory and inflammasome gene activation. Loss of this protective mechanism in miR-146a(-/-) mice leads to accelerated DN. Taken together, these results identify miR-146a as a novel anti-inflammatory noncoding RNA modulator of DN.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。