Imaging asparaginyl endopeptidase (AEP) in the live brain as a biomarker for Alzheimer's disease

对活体大脑中的天冬酰胺内切肽酶 (AEP) 进行成像,作为阿尔茨海默病的生物标志物

阅读:5
作者:Shan-Shan Wang #, Zi-Kai Liu #, Jing-Jing Liu #, Qing Cheng, Yan-Xia Wang, Yan Liu, Wen-Wen Ni, Hong-Zhuan Chen, Mingke Song

Background

Discovery of early-stage biomarkers is a long-sought goal of Alzheimer's disease (AD) diagnosis. Age is the greatest risk factor for most AD and accumulating evidence suggests that age-dependent elevation of asparaginyl endopeptidase (AEP) in the brain may represent a new biological marker for predicting AD. However, this speculation remains to be explored with an appropriate assay method because mammalian AEP exists in many organs and the level of AEP in body fluid isn't proportional to its concentration in brain parenchyma. To this end, we here modified gold nanoparticle (AuNPs) into an AEP-responsive imaging probe and choose transgenic APPswe/PS1dE9 (APP/PS1) mice as an animal model of AD. Our

Conclusions

The current work provided a proof of concept that assessment of brain AEP activity by in vivo imaging assay is a potential biomarker for early diagnosis of AD.

Results

This AEP-responsive imaging probe AuNPs-Cy5.5-A&C consisted of two particles, AuNPs-Cy5.5-AK and AuNPs-Cy5.5-CABT, which were respectively modified with Ala-Ala-Asn-Cys-Lys (AK) and 2-cyano-6-aminobenzothiazole (CABT). We showed that AuNPs-Cy5.5-A&C could be selectively activated by AEP to aggregate and emit strong fluorescence. Moreover, AuNPs-Cy5.5-A&C displayed a general applicability in various cell lines and its florescence intensity correlated well with AEP activity in these cells. In the brain of APP/PS1 transgenic mice , AEP activity was increased at an early disease stage of AD that precedes formation of senile plaques and cognitive impairment. Pharmacological inhibition of AEP with δ-secretase inhibitor 11 (10 mg kg-1, p.o.) reduced production of β-amyloid (Aβ) and ameliorated memory loss. Therefore, elevation of AEP is an early sign of AD onset. Finally, we showed that live animal imaging with this AEP-responsive probe could monitor the up-regulated AEP in the brain of APP/PS1 mice. Conclusions: The current work provided a proof of concept that assessment of brain AEP activity by in vivo imaging assay is a potential biomarker for early diagnosis of AD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。