The Histone H3K4 Demethylase JMJ16 Represses Leaf Senescence in Arabidopsis

组蛋白 H3K4 去甲基化酶 JMJ16 抑制拟南芥叶片衰老

阅读:4
作者:Peng Liu, Shuaibin Zhang, Bing Zhou, Xi Luo, Xiao Feng Zhou, Bin Cai, Yin Hua Jin, De Niu, Jinxing Lin, Xiaofeng Cao, Jing Bo Jin

Abstract

Leaf senescence is governed by a complex regulatory network involving the dynamic reprogramming of gene expression. Age-dependent induction of senescence-associated genes (SAGs) is associated with increased levels of trimethylation of histone H3 at Lys4 (H3K4me3), but the regulatory mechanism remains elusive. Here, we found that JMJ16, an Arabidopsis (Arabidopsis thaliana) JmjC-domain containing protein, is a specific H3K4 demethylase that negatively regulates leaf senescence through its enzymatic activity. Genome-wide analysis revealed a widespread coordinated upregulation of gene expression and hypermethylation of H3K4me3 at JMJ16 binding genes associated with leaf senescence in the loss-of-function jmj16 mutant as compared with the wild type. Genetic analysis indicated that JMJ16 negatively regulates leaf senescence, at least partly through repressing the expression of positive regulators of leaf senescence, WRKY53 and SAG201 JMJ16 associates with WRKY53 and SAG201 and represses their precocious expression in mature leaves by reducing H3K4me3 levels at these loci. The protein abundance of JMJ16 gradually decreases during aging, which is correlated with increased H3K4me3 levels at WRKY53 and SAG201, suggesting that the age-dependent downregulation of JMJ16 is required for the precise transcriptional activation of SAGs during leaf senescence. Thus, JMJ16 is an important regulator of leaf senescence that demethylates H3K4 at SAGs in an age-dependent manner.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。