Nanodrug-Engineered Exosomes Achieve a Jointly Dual-Pathway Inhibition on Cuproptosis

纳米药物工程外泌体实现对杯状细胞凋亡的联合双途径抑制

阅读:6
作者:Hanxiao Sun, Yang Zou, Zhengtai Chen, Yan He, Kai Ye, Huan Liu, Lihong Qiu, Yufan Zhang, Yuexue Mai, Xinghong Chen, Zhengwei Mao, Wei Wang, Chenggang Yi

Abstract

Cuproptosis, caused by an intracellular overload of copper (Cu) ions and overexpression of ferredoxin 1 (FDX1), is identified for its regulatory role in the skin wound healing process. This study verifies the presence of cuproptosis in skin wound beds and reactive oxygen species-induced cells model. To address the two pathways leading to cell cuproptosis, a nanodrug-engineered exosomes is proposed. A Cu-chelator (Clioquinol, CQ) polydopamine (PDA)-modified stem cell exosome loaded with siRNA-FDX1, named EXOsiFDX1-PDA@CQ, is designed to efficiently inhibit the two cuproptosis pathways. The functionalized exosomes are loaded into an injectable hydrogel and applied to treat diabetic wounds in mice and acute skin wounds in pigs. The local and controlled release of EXOsiFDX1-PDA@CQ ensures the retention of the therapeutic agent at wound beds, effectively promoting wound healing. The strategy of engineered exosomes with functional nanoparticles (NPs) proposed in this study offers an efficient and scalable new approach for regulating cuproptosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。