Mutant calreticulin-expressing cells induce monocyte hyperreactivity through a paracrine mechanism

突变的钙网蛋白表达细胞通过旁分泌机制诱导单核细胞高反应性

阅读:5
作者:Michael R Garbati, Catherine A Welgan, Sally H Landefeld, Laura F Newell, Anupriya Agarwal, Jennifer B Dunlap, Tapan K Chourasia, Hyunjung Lee, Johannes Elferich, Elie Traer, Rogan Rattray, Michael J Cascio, Richard D Press, Grover C Bagby, Jeffrey W Tyner, Brian J Druker, Kim-Hien T Dao

Abstract

Mutations in the calreticulin gene (CALR) were recently identified in approximately 70-80% of patients with JAK2-V617F-negative essential thrombocytosis and primary myelofibrosis. All frameshift mutations generate a recurring novel C-terminus. Here we provide evidence that mutant calreticulin does not accumulate efficiently in cells and is abnormally enriched in the nucleus and extracellular space compared to wildtype calreticulin. The main determinant of these findings is the loss of the calcium-binding and KDEL domains. Expression of type I mutant CALR in Ba/F3 cells confers minimal IL-3-independent growth. Interestingly, expression of type I and type II mutant CALR in a nonhematopoietic cell line does not directly activate JAK/STAT signaling compared to wildtype CALR and JAK2-V617F expression. These results led us to investigate paracrine mechanisms of JAK/STAT activation. Here we show that conditioned media from cells expressing type I mutant CALR exaggerate cytokine production from normal monocytes with or without treatment with a toll-like receptor agonist. These effects are not dependent on the novel C-terminus. These studies offer novel insights into the mechanism of JAK/STAT activation in patients with JAK2-V617F-negative essential thrombocytosis and primary myelofibrosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。