In Vitro Evaluation of the Biological Effects of ACTIVA Kids BioACTIVE Restorative, Ionolux, and Riva Light Cure on Human Dental Pulp Stem Cells

ACTIVA Kids BioACTIVE Restorative、Ionolux 和 Riva Light Cure 对人类牙髓干细胞生物学效应的体外评估

阅读:3
作者:Sergio López-García, María P Pecci-Lloret, Miguel R Pecci-Lloret, Ricardo E Oñate-Sánchez, David García-Bernal, Pablo Castelo-Baz, Francisco Javier Rodríguez-Lozano, Julia Guerrero-Gironés

Abstract

This study aimed to analyze the biological effects of three new bioactive materials on cell survival, migration, morphology, and attachment in vitro. ACTIVA Kids BioACTIVE Restorative (Pulpdent, Watertown, MA, USA) (Activa), Ionolux (Voco, Cuxhaven, Germany), and Riva Light Cure UV (SDI, Bayswater, Australia) (Riva) were handled and conditioned with a serum-free culture medium. Stem cells from human dental pulp (hDPSCs) were exposed to material extracts, and metabolic activity, cell migration, and cell morphology were evaluated. Cell adhesion to the different materials was analyzed by scanning electron microscopy (SEM). The chemical composition of the materials was evaluated by energy-dispersive X-ray (EDX). One-way analysis of variance followed by a Tukey test was performed (p < 0.05). Ionolux promoted a drastic reduction in metabolic activity and wound closure compared to the control (p < 0.05), whereas Activa induced adequate metabolic activity and cell migration. Moreover, SEM and immunofluorescence analysis showed abundant cells exposed to Activa. The materials showed different surface morphologies, and EDX spectra exhibited different peaks of C, O, Si, S, Ca, and F ions in glass ionomer cements. The results showed that Activa induced cell migration, cell attachment, and cell viability to a greater extent than Riva and Ionolux.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。