Stochastic modeling of phenotypic switching and chemoresistance in cancer cell populations

癌细胞群表型转换和化学耐药性的随机建模

阅读:6
作者:Niraj Kumar, Gwendolyn M Cramer, Seyed Alireza Zamani Dahaj, Bala Sundaram, Jonathan P Celli, Rahul V Kulkarni

Abstract

Phenotypic heterogeneity in cancer cells is widely observed and is often linked to drug resistance. In several cases, such heterogeneity in drug sensitivity of tumors is driven by stochastic and reversible acquisition of a drug tolerant phenotype by individual cells even in an isogenic population. Accumulating evidence further suggests that cell-fate transitions such as the epithelial to mesenchymal transition (EMT) are associated with drug resistance. In this study, we analyze stochastic models of phenotypic switching to provide a framework for analyzing cell-fate transitions such as EMT as a source of phenotypic variability in drug sensitivity. Motivated by our cell-culture based experimental observations connecting phenotypic switching in EMT and drug resistance, we analyze a coarse-grained model of phenotypic switching between two states in the presence of cytotoxic stress from chemotherapy. We derive analytical results for time-dependent probability distributions that provide insights into the rates of phenotypic switching and characterize initial phenotypic heterogeneity of cancer cells. The results obtained can also shed light on fundamental questions relating to adaptation and selection scenarios in tumor response to cytotoxic therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。