Coloration and Chromatic Sensing Behavior of Electrospun Cellulose Fibers with Curcumin

姜黄素对电纺纤维素纤维的着色及色感行为

阅读:13
作者:Minhee Kim, Hoik Lee, Myungwoong Kim, Yoon Cheol Park

Abstract

The effective approach for coloration and chromatic sensing of electrospun cellulose fabrics with a natural colorant, curcumin, is demonstrated. To achieve high surface area, the morphology of fiber was controlled to have rough and porous surface through an electrospinning of a cellulose acetate (CA) solution under optimized electrospinning parameters and solvent system. The resulting CA fibers were treated with a curcumin dye/NaOH ethanol solution, in which deacetylation of the CA fiber and high-quality coloration with curcumin were simultaneously achieved. As a control, a cotton fiber with similar diameter and smooth surface morphology was treated by the same method, resulting in poor coloration quality. The difference can be attributed to high surface area as well as trapping of dye molecules inside of cellulose fiber during deacetylation. Both fibers were further utilized for a chromatic sensing application for specific toxic gases. The incorporated curcumin dye responded to hydrogen chloride and ammonia gases reversibly via keto-enol tautomerism, and, as a consequence, the color was reversibly changed between reddish-brown and yellow colors. The cellulose fiber fabricated by the electrospinning showed ten times higher and two times quicker responsiveness compared to curcumin-colored cotton fiber sample prepared with the same immersion method.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。