Hypothalamic AMP-activated protein kinase activation with AICAR amplifies counterregulatory responses to hypoglycemia in a rodent model of type 1 diabetes

下丘脑 AMP 活化蛋白激酶与 AICAR 的激活可增强 1 型糖尿病啮齿动物模型对低血糖的反调节反应

阅读:5
作者:X Fan, Y Ding, S Brown, L Zhou, M Shaw, M C Vella, H Cheng, E C McNay, R S Sherwin, R J McCrimmon

Abstract

In nondiabetic rodents, AMP-activated protein kinase (AMPK) plays a role in the glucose-sensing mechanism used by the ventromedial hypothalamus (VMH), a key brain region involved in the detection of hypoglycemia. However, AMPK is regulated by both hyper- and hypoglycemia, so whether AMPK plays a similar role in type 1 diabetes (T1DM) is unknown. To address this issue, we used four groups of chronically catheterized male diabetic BB rats, a rodent model of autoimmune T1DM with established insulin-requiring diabetes (40 +/- 4 pmol/l basal c-peptide). Two groups were subjected to 3 days of recurrent hypoglycemia (RH), while the other two groups were kept hyperglycemic [chronic hyperglycemia (CH)]. All groups subsequently underwent hyperinsulinemic hypoglycemic clamp studies on day 4 in conjunction with VMH microinjection with either saline (control) or AICAR (5-aminoimidazole-4-carboxamide) to activate AMPK. Compared with controls, local VMH application of AICAR during hypoglycemia amplified both glucagon [means +/- SE, area under the curve over time (AUC/t) 144 +/- 43 vs. 50 +/- 11 ng.l(-1).min(-1); P < 0.05] and epinephrine [4.27 +/- 0.96 vs. 1.06 +/- 0.26 nmol.l(-1).min(-1); P < 0.05] responses in RH-BB rats, and amplified the glucagon [151 +/- 22 vs. 85 +/- 22 ng.l(-1).min(-1); P < 0.05] response in CH-BB rats. We conclude that VMH AMPK also plays a role in glucose-sensing during hypoglycemia in a rodent model of T1DM. Moreover, our data suggest that it may be possible to partially restore the hypoglycemia-specific glucagon secretory defect characteristic of T1DM through manipulation of VMH AMPK.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。