Calreticulin promotes angiogenesis via activating nitric oxide signalling pathway in rheumatoid arthritis

钙网蛋白通过激活一氧化氮信号通路促进类风湿关节炎的血管生成

阅读:6
作者:H Ding, C Hong, Y Wang, J Liu, N Zhang, C Shen, W Wei, F Zheng

Abstract

Calreticulin (CRT) is a multi-functional endoplasmic reticulum protein implicated in the pathogenesis of rheumatoid arthritis (RA). The present study was undertaken to determine whether CRT was involved in angiogenesis via the activating nitric oxide (NO) signalling pathway. We explored the profile of CRT expression in RA (including serum, synovial fluid and synovial tissue). In order to investigate the role of CRT on angiogenesis, human umbilical vein endothelial cells (HUVECs) were isolated and cultured in this study for in-vitro experiments. Our results showed a significantly higher concentration of CRT in serum (5·4 ± 2·2 ng/ml) of RA patients compared to that of osteoarthritis (OA, 3·6 ± 0·9 ng/ml, P < 0·05) and healthy controls (HC, 3·7 ± 0·6 ng/ml, P < 0·05); and significantly higher CRT in synovial fluid (5·8 ± 1·2 ng/ml) of RA versus OA (3·7 ± 0·3 ng/ml, P < 0·05). High levels of CRT are expressed in synovial membrane localized predominantly to inflammatory cells and synovial perivascular areas in both the lining and sublining layers of RA synovial tissue (RAST). Increased nitric oxide (NO) production and phosphorylation level of endothelial nitric oxide synthase (eNOS) were measured in HUVECs following CRT stimulation, while the total eNOS expression was not significantly changed. Furthermore, CRT promoted the proliferation, migration and tube formation of HUVECs, which were significantly inhibited by a specific eNOS inhibitor. These findings suggested that CRT may be involved in angiogenesis events in RA through NO signalling pathways, which may provide a potential therapeutic target in the treatment of RA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。