Characterization of endothelial progenitor cells mobilization following cutaneous wounding

皮肤损伤后内皮祖细胞动员的特征

阅读:6
作者:Lee M Morris, Charles A Klanke, Stephanie A Lang, Stefan Pokall, Arturo R Maldonado, Jose F Vuletin, Datis Alaee, Sundeep G Keswani, Foong-Yen Lim, Timothy M Crombleholme

Abstract

Bone marrow (BM)-derived endothelial progenitor cells (EPCs) are known to play an important role in neovascularization and wound healing. We investigated the temporal effects of cutaneous wounding on EPC surface markers within the peripheral blood and BM, and to better understand the role of the stromal cell-derived factor-1 alpha (SDF-1alpha/CXCR4) axis on EPC mobilization after wounding. FVB/NJ mice were administered bilateral 8 mm circular full-thickness skin wounds. Peripheral blood and BM were isolated at daily intervals postwounding through day 7 and analyzed for EPC mobilization characteristics and levels of SDF-1alpha. Cutaneous wounding was found to cause a transient increase in EPC mobilization that peaked on day 3. In contrast, SDF-1alpha protein within blood plasma was observed to significantly decrease on days 3, 4, and 7 following cutaneous wounding. BM levels of SDF-1alpha protein decreased to a nadir on day 3, the same day as peak mobilization was observed to occur. The decrease in BM SDF-1alpha protein levels was also associated with a decrease in SDF-1alpha mRNA suggesting transcriptional down-regulation as a contributing factor. This study for the first time characterizes EPC mobilization following cutaneous wounding in mice and supports a major role for the SDF-1alpha/CXCR4 axis in regulating mobilization within the BM, without evidence for systemic increases in SDF-1alpha.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。