Zinc Oxide Nanoparticle Loaded L-Carnosine Biofunctionalized Polyacrylonitrile Nanofibrous Wound Dressing for Post-Surgical Treatment of Melanoma

载有 L-肌肽的氧化锌纳米粒子生物功能化聚丙烯腈纳米纤维伤口敷料用于黑色素瘤术后治疗

阅读:6
作者:Shahin Homaeigohar, Danial Kordbacheh, Sourav Banerjee, Jiacheng Gu, Yilong Zhang, Zhihong Huang

Abstract

Nanofibrous dressing materials with an antitumor function can potentially inhibit recurrence of melanoma following the surgical excision of skin tumors. In this study, hydrolyzed polyacrylonitrile (hPAN) nanofibers biofunctionalized with L-carnosine (CAR) and loaded with bio (CAR)-synthesized zinc oxide (ZnO) nanoparticles, ZnO/CAR-hPAN (hereafter called ZCPAN), were employed to develop an antimelanoma wound dressing. Inspired by the formulation of the commercial wound healing Zn-CAR complex, i.e., polaprezinc (PLZ), for the first time, we benefitted from the synergy of zinc and CAR to create an antimelanoma nanofibrous wound dressing. According to scanning electron microscopy (SEM) images, ultrafine ZnO nanoparticles were homogenously distributed throughout the nanofibrous dressing. The ZCPAN nanofiber mat showed a significantly higher toughness (18.7 MJ.m-3 vs. 1.4 MJ.m-3) and an enhanced elongation at break (stretchability) compared to the neat PAN nanofiber mat (12% vs. 9.5%). Additionally, optical coherence elastography (OCE) measurements indicated that the ZCPAN nanofibrous dressing was as stiff as 50.57 ± 8.17 kPa which is notably larger than that of the PAN nanofibrous dressing, i.e., 24.49 ± 6.83 kPa. The optimum mechanical performance of the ZCPAN nanofibers originates from physicochemical interaction of CAR ligands, hPAN nanofibers, and ZnO nanoparticles through hydrogen bonding, electrostatic bonding, and esterification, as verified using ATR-FTIR. An in vitro cell viability assay using human skin melanoma cells implied that the cells are notably killed in the presence of the ZCPAN nanofibers compared to the PAN nanofibers. Thanks to ROS generating ZnO nanoparticles, this behavior originates from the high reactive oxygen species (ROS)-induced oxidative damage of melanoma cells, as verified through a CellROX assay. In this regard, an apoptotic cell response to the ZCPAN nanofibers was recorded through an apoptosis assay. Taken together, the ZCPAN nanofibers induce an antimelanoma effect through oxidative stress and thus are a high potential wound dressing material to suppress melanoma regrowth after surgical excision of skin tumors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。