Interlaboratory evaluation of rodent pulmonary responses to engineered nanomaterials: the NIEHS Nano GO Consortium

啮齿动物肺部对工程纳米材料反应的实验室间评估:NIEHS Nano GO 联盟

阅读:7
作者:James C Bonner, Rona M Silva, Alexia J Taylor, Jared M Brown, Susana C Hilderbrand, Vincent Castranova, Dale Porter, Alison Elder, Günter Oberdörster, Jack R Harkema, Lori A Bramble, Terrance J Kavanagh, Dianne Botta, Andre Nel, Kent E Pinkerton

Background

Engineered nanomaterials (ENMs) have potential benefits, but they also present safety concerns for human health. Interlaboratory studies in rodents using standardized protocols are needed to assess ENM toxicity.

Conclusions

ENMs produced similar patterns of neutrophilia and pathology in rats and mice. Although interlaboratory variability was found in the degree of neutrophilia caused by the three types of TiO2 nanoparticles, similar findings of relative potency for the three types of MWCNTs were found across all laboratories, thus providing greater confidence in these interlaboratory comparisons.

Methods

Four laboratories evaluated lung responses in C57BL/6 mice to ENMs delivered by oropharyngeal aspiration (OPA), and three labs evaluated Sprague-Dawley (SD) or Fisher 344 (F344) rats following intratracheal instillation (IT). ENMs tested included three forms of titanium dioxide (TiO2) [anatase/rutile spheres (TiO2-P25), anatase spheres (TiO2-A), and anatase nanobelts (TiO2-NBs)] and three forms of multiwalled carbon nanotubes (MWCNTs) [original (O), purified (P), and carboxylic acid "functionalized" (F)]. One day after treatment, bronchoalveolar lavage fluid was collected to determine differential cell counts, lactate dehydrogenase (LDH), and protein. Lungs were fixed for histopathology. Responses were also examined at 7 days (TiO2 forms) and 21 days (MWCNTs) after treatment.

Results

TiO2-A, TiO2-P25, and TiO2-NB caused significant neutrophilia in mice at 1 day in three of four labs. TiO2-NB caused neutrophilia in rats at 1 day in two of three labs, and TiO2-P25 and TiO2-A had no significant effect in any of the labs. Inflammation induced by TiO2 in mice and rats resolved by day 7. All MWCNT types caused neutrophilia at 1 day in three of four mouse labs and in all rat labs. Three of four labs observed similar histopathology to O-MWCNTs and TiO2-NBs in mice. Conclusions: ENMs produced similar patterns of neutrophilia and pathology in rats and mice. Although interlaboratory variability was found in the degree of neutrophilia caused by the three types of TiO2 nanoparticles, similar findings of relative potency for the three types of MWCNTs were found across all laboratories, thus providing greater confidence in these interlaboratory comparisons.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。