Impact of Magnesium on Oxytocin Receptor Function

镁对催产素受体功能的影响

阅读:8
作者:Vimala N Bharadwaj, Justin Meyerowitz, Bende Zou, Michael Klukinov, Ni Yan, Kaustubh Sharma, David J Clark, Xinmin Xie, David C Yeomans

Background and purpose

The intranasal administration of oxytocin (OT) reduces migraine headaches through activation of the oxytocin receptor (OTR). Magnesium ion (Mg2+) concentration is critical to the activation of the OTR, and a low serum Mg2+ concentration is predictive of a migraine headache. We, therefore, examined the functional impact of Mg2+ concentration on OT-OTR binding efficacy using two complimentary bioassays. Experimental approach: Current clamp recordings of rat trigeminal ganglia (TG) neurons measured the impact of Mg2+ on an OT-induced reduction in excitability. In addition, we assessed the impact of Mg2+ on intranasal OT-induced craniofacial analgesia in rats. Key

Purpose

The intranasal administration of oxytocin (OT) reduces migraine headaches through activation of the oxytocin receptor (OTR). Magnesium ion (Mg2+) concentration is critical to the activation of the OTR, and a low serum Mg2+ concentration is predictive of a migraine headache. We, therefore, examined the functional impact of Mg2+ concentration on OT-OTR binding efficacy using two complimentary bioassays. Experimental approach: Current clamp recordings of rat trigeminal ganglia (TG) neurons measured the impact of Mg2+ on an OT-induced reduction in excitability. In addition, we assessed the impact of Mg2+ on intranasal OT-induced craniofacial analgesia in rats. Key

Results

While OT alone dose-dependently hyperpolarized TG neurons, decreasing their excitability, the addition of 1.75 mM Mg2+ significantly enhanced this effect. Similarly, while the intranasal application of OT produced dose-dependent craniofacial analgesia, Mg2+ significantly enhanced these effects. Conclusions and implications: OT efficacy may be limited by low ambient Mg2+ levels. The addition of Mg2+ to OT formulations may improve its efficacy in reducing headache pain as well as for other OT-dependent processes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。