Label-free quantification of host cell protein impurity in recombinant hemoglobin materials

重组血红蛋白材料中宿主细胞蛋白杂质的无标记定量

阅读:5
作者:André Henrion, Cristian-Gabriel Arsene, Maik Liebl, Gavin O'Connor

Abstract

Quantitative analysis relies on pure-substance primary calibrators with known mass fractions of impurity. Here, label-free quantification (LFQ) is being evaluated as a readily available, reliable method for determining the mass fraction of host cell proteins (HCPs) in bioengineered proteins which are intended for use as protein calibration standards. In this study a purified hemoglobin-A2 (HbA2) protein, obtained through its overexpression in E. coli, was used. Two different materials were produced: natural and U15N-labeled HbA2. For the quantification of impurities, precursor ion (MS1-) intensities were integrated over all E. coli proteins identified and divided by the intensities obtained for HbA2. This ratio was calibrated against the corresponding results for an E. coli cell lysate, which had been spiked at known mass ratios to pure HbA2. To demonstrate the universal applicability of LFQ, further proteomes (yeast and human K562) were then alternatively used for calibration and found to produce comparable results. Valid results were also obtained when the complexity of the calibrator was reduced to a mix of just nine proteins, and a minimum of five proteins was estimated to be sufficient to keep the sampling error below 15%. For the studied materials, HbA2 mass fractions (or purities) of 923 and 928 mg(HbA2)/g(total protein) were found with expanded uncertainties (U) of 2.8 and 1.3%, resp. Value assignment by LFQ thus contributes up to about 3% of the overall uncertainty of HbA2 quantification when these materials are used as calibrators. Further purification of the natural HbA2 yielded a mass fraction of 999.1 mg/g, with a negligible uncertainty (U = 0.02%), though at a significant loss of material. If an overall uncertainty of 5% is acceptable for protein quantification, working with the original materials would therefore definitely be viable, circumventing the need of further purification.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。