Elucidation of Inverse Agonist Activity of Bilastine

比拉斯汀反向激动剂活性的阐明

阅读:4
作者:Hiroyuki Mizuguchi, Tomoharu Wakugawa, Hisato Sadakata, Seiichiro Kamimura, Mai Takemoto, Tomomi Nakagawa, Masami Yabumoto, Yoshiaki Kitamura, Noriaki Takeda, Hiroyuki Fukui

Abstract

H1-antihistamines antagonize histamine and prevent it from binding to the histamine H1 receptor (H1R). Some of them also act as inverse agonists, which are more potent than pure antagonists because they suppress the constitutive H1R activity. Bilastine is a non-sedative antihistamine which is one of the most satisfy the requirements for oral antihistamines. However, there is no information to show the inverse agonist activity of bilastine including inositol phosphates accumulation, and its inverse agonist activity is yet to be elucidated. Here we evaluated whether bilastine has inverse agonist activity or not. Intracellular calcium concentration was measured using Fluo-8. Inositol phosphates accumulation was assayed using [3H]myo-inositol. The H1R mRNA level was measured using real-time RT-PCR. At rest, Ca2+ oscillation was observed, indicating that H1R has intrinsic activity. Bilastine attenuated this fluorescence oscillation. Bilastine suppressed the increase in IPs formation in a dose-dependent manner and it was about 80% of the control level at the dose of 3 μM. Bilastine also suppressed histamine-induced increase in IPs formation to the control level. Furthermore, bilastine suppressed basal H1R gene expression in a dose-dependent manner. Data suggest that bilastine is an inverse agonist. Preseasonal prophylactic administration with bilastine could down-regulate basal H1R gene expression in the nasal mucosa and ameliorate the nasal symptoms during the peak pollen period.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。