Label-free quantitative proteomic analyses of mouse astrocytes provides insight into the host response mechanism at different developmental stages of Toxoplasma gondii

小鼠星形胶质细胞的无标记定量蛋白质组学分析有助于深入了解弓形虫不同发育阶段的宿主反应机制

阅读:4
作者:Huanhuan Xie, Hang Sun, Hongjie Dong, Lisha Dai, Haozhi Xu, Lixin Zhang, Qi Wang, Junmei Zhang, Guihua Zhao, Chao Xu, Kun Yin

Abstract

Toxoplasma gondii (T. gondii) is an opportunistic parasite that can infect the central nervous system (CNS), causing severe toxoplasmosis and behavioral cognitive impairment. Mortality is high in immunocompromised individuals with toxoplasmosis, most commonly due to reactivation of infection in the CNS. There are still no effective vaccines and drugs for the prevention and treatment of toxoplasmosis. There are five developmental stages for T. gondii to complete life cycle, of which the tachyzoite and bradyzoite stages are the key to the acute and chronic infection. In this study, to better understanding of how T. gondii interacts with the host CNS at different stages of infection, we constructed acute and chronic infection models of T. gondii in astrocytes, and used label-free proteomics to detect the proteome changes before and after infection, respectively. A total of 4676 proteins were identified, among which 163 differentially expressed proteins (fold change ≥ 1.5 or ≤ 0.67 and p-value ≤ 0.05) including 109 up-regulated proteins and 54 down-regulated proteins in C8-TA vs C8 group, and 719 differentially expressed proteins including 495 up-regulated proteins and 224 down-regulated proteins in C8-BR vs C8-TA group. After T. gondii tachyzoites infected astrocytes, differentially expressed proteins were enriched in immune-related biological processes to promote the formation of bradyzoites and maintain the balance of T. gondii, CNS and brain. After T. gondii bradyzoites infected astrocytes, the differentially expressed proteins up-regulated the host's glucose metabolism, and some up-regulated proteins were strongly associated with neurodegenerative diseases. These findings not only provide new insights into the psychiatric pathogenesis of T. gondii, but also provide potential targets for the treatment of acute and chronic Toxoplasmosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。