Leveraging Synthetic Virology for the Rapid Engineering of Vesicular Stomatitis Virus (VSV)

利用合成病毒学快速改造水泡性口炎病毒 (VSV)

阅读:6
作者:Chad M Moles, Rupsa Basu, Peter Weijmarshausen, Brenda Ho, Manal Farhat, Taylor Flaat, Bruce F Smith

Abstract

Vesicular stomatitis virus (VSV) is a prototype RNA virus that has been instrumental in advancing our understanding of viral molecular biology and has applications in vaccine development, cancer therapy, antiviral screening, and more. Current VSV genome plasmids for purchase or contract virus services provide limited options for modification, restricted to predefined cloning sites and insert locations. Improved methods and tools to engineer VSV will unlock further insights into long-standing virology questions and new opportunities for innovative therapies. Here, we report the design and construction of a full-length VSV genome. The 11,161 base pair synthetic VSV (synVSV) was assembled from four modularized DNA fragments. Following rescue and titration, phenotypic analysis showed no significant differences between natural and synthetic viruses. To demonstrate the utility of a synthetic virology platform, we then engineered VSV with a foreign glycoprotein, a common use case for studying viral entry and developing anti-virals. To show the freedom of design afforded by this platform, we then modified the genome of VSV by rearranging the gene order, switching the positions of VSV-P and VSV-M genes. This work represents a significant technical advance, providing a flexible, cost-efficient platform for the rapid construction of VSV genomes, facilitating the development of innovative therapies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。