The Antipsychotic Drug Aripiprazole Suppresses Colorectal Cancer by Targeting LAMP2a to Induce RNH1/miR-99a/mTOR-Mediated Autophagy and Apoptosis

抗精神病药物阿立哌唑通过靶向 LAMP2a 诱导 RNH1/miR-99a/mTOR 介导的自噬和细胞凋亡来抑制结直肠癌

阅读:10
作者:Hui-Fang Hu, Jia-Ying Fu, Lei Han, Gui-Bin Gao, Wei-Xia Zhang, Si-Ming Yu, Nan Li, Yang-Jia Li, Yi-Fan Lu, Xiao-Feng Ding, Yun-Long Pan, Yang Wang, Qing-Yu He

Abstract

The mammalian target of rapamycin (mTOR) is a critical signaling hub for sustaining cancer survival. Targeting mTOR and inducing autophagic cell death downstream of it represent promising therapeutic strategies for cancer prevention. A US Food and Drug Administration-approved drug library containing 616 small molecules is used to screen anticancer drugs against colorectal cancer (CRC) cells that rely on mTOR. This led to the identification of an antipsychotic drug aripiprazole, which significantly induced mTOR inhibition and autophagic apoptosis in CRC, in vitro and in vivo. The use of drug affinity response target stability identified lysosome-associated membrane protein 2A (LAMP2a) as a direct target of aripiprazole. LAMP2a-deficient CRC cells are refractory to aripiprazole. High LAMP2a expression is associated with poor survival of patients with CRC and negatively correlated with expression of ribonuclease inhibitor 1 (RNH1), which is later confirmed as a novel substrate of LAMP2a. Mechanistically, aripiprazole bound to the Lys401-His404 of LAMP2a and repressed its activity, subsequently inactivating RNH1/miR-99a/mTOR signaling and inducing autophagy-mediated apoptosis, thereby suppressing tumorigenesis. Liposome-mediated delivery of aripiprazole in combination with fluorouracil elicited superior therapeutic benefits in CRC, as compared to single treatments, thereby highlighting that aripiprazole may be repurposed as a novel therapeutic agent for CRC treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。