HEAT SHOCK FACTOR A8a Modulates Flavonoid Synthesis and Drought Tolerance

热休克因子 A8a 调节黄酮类化合物的合成和抗旱性

阅读:5
作者:Nan Wang, Wenjun Liu, Lei Yu, Zhangwen Guo, Zijing Chen, Shenghui Jiang, Haifeng Xu, Hongcheng Fang, Yicheng Wang, Zongying Zhang, Xuesen Chen

Abstract

Drought is an important environmental factor affecting the growth and production of agricultural crops and fruits worldwide, including apple (Malus domestica). Heat shock factors (HSFs) have well-documented functions in stress responses, but their roles in flavonoid synthesis and the flavonoid-mediated drought response mechanism remain elusive. In this study, we demonstrated that a drought-responsive HSF, designated MdHSFA8a, promotes the accumulation of flavonoids, scavenging of reactive oxygen species, and plant survival under drought conditions. A chaperone, HEAT SHOCK PROTEIN90 (HSP90), interacted with MdHSFA8a to inhibit its binding activity and transcriptional activation. However, under drought stress, the MdHSP90-MdHSFA8a complex dissociated and the released MdHSFA8a further interacted with the APETALA2/ETHYLENE RESPONSIVE FACTOR family transcription factor RELATED TO AP2.12 to activate downstream gene activity. In addition, we demonstrated that MdHSFA8a participates in abscisic acid-induced stomatal closure and promotes the expression of abscisic acid signaling-related genes. Collectively, these findings provide insight into the mechanism by which stress-inducible MdHSFA8a modulates flavonoid synthesis to regulate drought tolerance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。