Mechanistic insight of interleukin-9 induced osteoclastogenesis

白细胞介素-9 诱导破骨细胞生成的机制见解

阅读:11
作者:Sushmita Chakraborty, Jakob Schneider, Dipendra Kumar Mitra, Katharina F Kubatzky

Abstract

Interleukin (IL)-9 is an emerging player in the pathogenesis of various chronic inflammatory diseases including bone disorders like rheumatoid arthritis (RA) and psoriatic arthritis. Recently, IL-9 was shown to enhance the osteoclast formation and their function in RA. However, the mechanisms by which IL-9 influences osteoclastogenesis are not known. Therefore, in this study we aimed to unravel the direct and indirect ways by which IL-9 can influence osteoclast formation. We used mouse bone marrow precursor cells for checking the effect of IL-9 on osteoclast differentiation and its function. Next, IL-9 induced signalling pathway were checked in the process of osteoclastogenesis. T cells play an important role in enhancing osteoclastogenesis in inflammatory conditions. We used splenic T cells to understand the impact of IL-9 on the functions of T effector (Teff) and regulatory T (Treg) cells. Furthermore, the effect of IL-9 mediated modulation of the T cell response on osteoclasts was checked using a coculture model of T cells with osteoclast precursors. We showed that IL-9 enhanced osteoclast formation and its function. We found that IL-9 activates STAT3, P38 MAPK, ERK1/2, NFκB and we hypothesize that it mediates the effect on osteoclastogenesis by accelerating mitochondrial biogenesis. Additionally, IL-9 was observed to facilitate the functions of pro-osteoclastogenic IL-17 producing T cells, but inhibits the function of anti-osteoclastogenic Treg cells. Our observations suggest that IL-9 can influence osteoclastogenesis directly by modulating the signalling cascade in the precursor cells; indirectly by enhancing IL-17 producing T cells and by reducing the functions of Treg cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。