Fine Particulate Air Pollution and Adverse Birth Outcomes: Effect Modification by Regional Nonvolatile Oxidative Potential

细颗粒物空气污染与不良出生结果:区域非挥发性氧化潜力的影响修改

阅读:5
作者:Éric Lavigne, Richard T Burnett, David M Stieb, Greg J Evans, Krystal J Godri Pollitt, Hong Chen, David van Rijswijk, Scott Weichenthal

Background

Prenatal exposure to fine particulate matter air pollution with aerodynamic diameter ≤2.5 μm (PM2.5) has been associated with preterm delivery and low birth weight (LBW), but few studies have examined possible effect modification by oxidative potential. Objectives: The

Conclusions

Between-city differences in GSH-related oxidative potential may modify the impact of PM2.5 on the risk of term LBW and preterm birth. https://doi.org/10.1289/EHP2535.

Methods

A retrospective cohort study was conducted using 196,171 singleton births that occurred in 31 cities in the province of Ontario, Canada, from 2006 to 2012. Daily air pollution data were collected from ground monitors, and city-level PM2.5 oxidative potential was measured. We used random-effects meta-analysis to combine the estimates of effect from regression models across cities on preterm birth, term LBW, and term birth weight and used meta-regression to evaluate the modifying effect of PM2.5 oxidative potential.

Results

An interquartile increase (2.6 μg/m3) in first-trimester PM2.5 was positively associated with term LBW among women in the highest quartile of glutathione (GSH)-related oxidative potential [odds ratio (OR)=1.28; 95% confidence interval (CI): 1.10, 1.48], but not the lowest quartile (OR=0.99; 95% CI: 0.87, 1.14; p-interaction=0.03). PM2.5 on the day of delivery also was associated with preterm birth among women in the highest quartile of GSH-related oxidative potential [hazard ratio (HR)=1.02; 95% CI: 1.01, 1.04], but not the lowest quartile [HR=0.97; 95% CI: 0.95, 1.00; p-interaction=0.04]. Between-city differences in ascorbate (AA)-related oxidative potential did not significantly modify associations with PM2.5. Conclusions: Between-city differences in GSH-related oxidative potential may modify the impact of PM2.5 on the risk of term LBW and preterm birth. https://doi.org/10.1289/EHP2535.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。