Prognostic prediction using a gene signature developed based on exhausted T cells for liver cancer patients

使用基于耗竭 T 细胞开发的基因特征对肝癌患者进行预后预测

阅读:5
作者:Yu Zhou, Wanrui Wu, Wei Cai, Dong Zhang, Weiwei Zhang, Yunling Luo, Fujing Cai, Zhenjing Shi

Background

Liver hepatocellular carcinoma (LIHC) is a solid primary malignancy with poor prognosis. This study discovered key prognostic genes based on T cell exhaustion and used them to develop a prognostic prediction model for LIHC.

Conclusion

We developed a RiskScore model for predicting LIHC prognosis based on the scRNA-seq and RNA-seq data. The RiskScore as an independent prognostic factor could improve the clinical treatment for LIHC patients.

Methods

SingleR's annotations combined with Seurat was used to automatically annotate the single-cell clustering

Results

We obtained 18,413 cells and clustered them into 7 immune and non-immune cell subpopulations. Based on highly variable genes among T cell exhaustion clusters, 3 molecular subtypes (C1, C2 and C3) of LIHC were defined, with C3 subtype showing the highest score of exhausted T cells and a poor prognosis. The Lasso and multivariate cox analysis selected 7 risk genes from the green module, which were closely associated with the C3 subtype. All the patients were divided into low- and high-risk groups based on the medium value of RiskScore, and we found that high-risk patients had higher immune infiltration and immune escape and poorer prognosis. The nomogram exhibited a strong performance for predicting long-term LIHC prognosis. In vitro experiments revealed that the 7 risk genes all had a higher expression in HCC cells, and that both liver HCC cell numbers and cell viability were reduced by knocking down MMP-9.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。