Suppression of oncogenic properties of c-Myc by LKB1-controlled epithelial organization

LKB1 控制的上皮组织抑制 c-Myc 的致癌特性

阅读:6
作者:Johanna I Partanen, Anni I Nieminen, Tomi P Mäkelä, Juha Klefstrom

Abstract

Cellular organization into epithelial architecture maintains structural integrity and homeostasis by suppressing cell proliferation and apoptosis. However, it is unclear whether the epithelial organization is sufficient to block induction of cell-autonomous cell cycle progression and apoptotic sensitivity by activated oncogenes. We show that chronic activation of oncogenic c-Myc, starting in the developing 3D organotypic mammary acinar structures, results in hyperproliferation and transformed acinar morphology. Surprisingly, acute c-Myc activation in mature quiescent acini with established epithelial architecture fails to reinitiate the cell cycle or transform these structures. c-Myc does reinitiate the cell cycle in quiescent, but structurally unorganized, acini, which demonstrates that proper epithelial architecture is needed for the proliferation blockade. The capability of c-Myc to reinitiate the cell cycle in acinar structures is also restored by the loss of LKB1, a human homologue of the cell polarity protein PAR4. The epithelial architecture also restrains the apoptotic activity of c-Myc, but coactivation of c-Myc and a complementary TNF-related apoptosis-inducing ligand death receptor pathway can induce a strong Bim and Bid-mediated apoptotic response in the established acini. The results together expose surprising proliferation and apoptosis resistance of organized epithelial structures and identify a role for the polarity regulator LKB1 in the development of c-Myc-resistant cell organization.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。