Do fragments and glycosylated isoforms of alpha-1-antitrypsin in CSF mirror spinal pathophysiological mechanisms in chronic peripheral neuropathic pain? An exploratory, discovery phase study

脑脊液中的 α-1-抗胰蛋白酶的碎片和糖基化异构体是否反映了慢性周围神经性疼痛的脊髓病理生理机制?一项探索性、发现阶段研究

阅读:6
作者:Emmanuel Bäckryd, Sofia Edström, Björn Gerdle, Bijar Ghafouri

Aims

(1) To examine the multivariate inter-correlations between all identified isoforms of these seven proteins; (2) Based on the

Background

Post-translational modifications (PTMs) generate a tremendous protein diversity from the ~ 20,000 protein-coding genes of the human genome. In chronic pain conditions, exposure to pathological processes in the central nervous system could lead to disease-specific PTMs detectable in the cerebrospinal fluid (CSF). In a previous hypothesis-generating study, we reported that seven out of 260 CSF proteins highly discriminated between neuropathic pain patients and healthy controls: one isoform of angiotensinogen (AG), two isoforms of alpha-1-antitrypsin (AT), three isoforms of haptoglobin (HG), and one isoform of pigment epithelium-derived factor (PEDF). The present study had three aims: (1) To examine the multivariate inter-correlations between all identified isoforms of these seven proteins; (2) Based on the

Conclusions

Altered levels of fragments and/or glycosylated isoforms of alpha-1-antitrypsin might mirror pathophysiological processes in the spinal cord of neuropathic pain patients. In particular, we suggest that a putative disease-specific combination of the levels of two different N-truncated fragments of alpha-1-antitrypsin might be interesting for future CSF and/or plasma biomarker investigations in chronic neuropathic pain.

Methods

CSF samples from 11 neuropathic pain patients and 11 healthy controls were used for biochemical analysis of protein isoforms. PTM characterization was performed using enzymatic reaction assay and mass spectrometry. Multivariate data analysis (principal component analysis and orthogonal partial least square regression) was applied on the quantified protein isoforms.

Results

We identified 5 isoforms of AG, 18 isoforms of AT, 5 isoforms of HG, and 5 isoforms of PEDF. Fragments and glycosylated isoforms of AT were studied in depth. When regressing the pain intensity data of patients, three isoforms of AT, two isoforms of PEDF, and one isoform of angiotensinogen "reappeared" as major results, i.e., they were major findings both when comparing patients with healthy controls and when regressing pain intensity in patients. Conclusions: Altered levels of fragments and/or glycosylated isoforms of alpha-1-antitrypsin might mirror pathophysiological processes in the spinal cord of neuropathic pain patients. In particular, we suggest that a putative disease-specific combination of the levels of two different N-truncated fragments of alpha-1-antitrypsin might be interesting for future CSF and/or plasma biomarker investigations in chronic neuropathic pain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。