Isolated compounds from Dracaena angustifolia Roxb and acarbose synergistically/additively inhibit α-glucosidase and α-amylase: an in vitro study

从龙血树和阿卡波糖中分离的化合物协同/附加地抑制 α-葡萄糖苷酶和 α-淀粉酶:一项体外研究

阅读:6
作者:Jiling Yi, Ting Zhao, Yuanlin Zhang, Yanxing Tan, Xiao Han, Yulin Tang, Guangying Chen

Background

As a traditional herbal medicine, Dracaena angustifolia Roxb has been used as an anti-inflammatory agent by the Li people in Hainan, China. In preliminary phytochemical studies conducted in our lab, its fractions were found to inhibit α-glucosidase in vitro, indicating a potential for alleviating glucose dysregulation.

Conclusion

Despite their mild effects on α-amylase, considerable α-glucosidase inhibitory efficiencies and potential synergy with acarbose were exhibited by these natural candidates. Furthermore, a stable ligand, human α-glucosidase, was predicted by the performed simulations, which provided useful information for the application of Dracaena angustifolia Roxb in diabetes treatment.

Methods

Through in vitro enzymatic assays, the abilities of the separated components to affect α-glucosidase and α-amylase were evaluated. By establishing concentration gradients and generating Lineweaver-Burk plots, the corresponding inhibition modes together with kinetic parameters were assessed. Following the evaluation of the outcomes of their combination with acarbose, computational docking and molecular dynamic simulations were carried out to analyse the interaction mechanisms and perform virtual screening against human enzymes.

Results

Compared with acarbose, 7 compounds, including flavonoid derivatives, amides and aromatic derivatives, with higher α-glucosidase inhibitory efficiencies were confirmed. It was found that those competitive/mixed candidates and acarbose interacted synergistically or additively on α-glucosidase. Moreover, 3 of them were able to inhibit α-amylase in mixed mode, and additive effects were observed in combination with acarbose. Through in silico docking, it was found that the active site residues as well as adjacent residues were involved in α-glucosidase and α-amylase binding, which were mainly achieved through hydrogen bonding. Among those dual-function flavonoids, Compound 9 was predicted to be a considerable inhibitor of human enzymes, as the formation of ligand-enzyme complexes was mediated by the residues responsible for substrate recognition and catalysis, the stabilities of which were reiterated by molecular dynamics simulations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。