Renal expression of parvalbumin is critical for NaCl handling and response to diuretics

小白蛋白的肾脏表达对于 NaCl 处理和利尿剂反应至关重要

阅读:6
作者:Hendrica Belge, Philippe Gailly, Beat Schwaller, Johannes Loffing, Huguette Debaix, Eva Riveira-Munoz, Renaud Beauwens, Jean-Pierre Devogelaer, Joost G Hoenderop, René J Bindels, Olivier Devuyst

Abstract

The distal convoluted tubule (DCT) plays an essential role in the reabsorption of NaCl by the kidney, a process that can be inhibited by thiazide diuretics. Parvalbumin (PV), a Ca(2+)-binding protein that plays a role in muscle fibers and neurons, is selectively expressed in the DCT, where its role remains unknown. We therefore investigated the renal phenotype of PV knockout mice (Pvalb(-/-)) vs. wild-type (Pvalb(+/+)) littermates. PV colocalized with the thiazide-sensitive Na(+)-Cl(-) cotransporter (NCC) in the early DCT. The Pvalb(-/-) mice showed increased diuresis and kaliuresis at baseline with higher aldosterone levels and lower lithium clearance. Acute furosemide administration increased diuresis and natriuresis/kaliuresis, but, surprisingly, did not increase calciuria in Pvalb(-/-) mice. NaCl supplementation of Pvalb(-/-) mice increased calciuria at baseline and after furosemide. The Pvalb(-/-) mice showed no significant diuretic response to hydrochlorothiazide, but an accentuated hypocalciuria. A decreased expression of NCC was detected in the early DCT of Pvalb(-/-) kidneys in the absence of ultrastructural and apoptotic changes. The PV-deficient mice had a positive Ca(2+) balance and increased bone mineral density. Studies in mouse DCT cells showed that endogenous NCC expression is Ca(2+)-dependent and can be modulated by the levels of PV expression. These results suggest that PV regulates the expression of NCC by modulating intracellular Ca(2+) signaling in response to ATP in DCT cells. They also provide insights into the Ca(2+)-sparing action of thiazides and the pathophysiology of distal tubulopathies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。