Early growth response factor-1 limits biliary fibrosis in a model of xenobiotic-induced cholestasis in mice

早期生长反应因子-1 限制小鼠外来化合物诱发的胆汁淤积模型中的胆道纤维化

阅读:8
作者:Bradley P Sullivan, Wei Cui, Bryan L Copple, James P Luyendyk

Abstract

Hepatic expression of the transcription factor early growth response-1 (Egr-1) is increased in livers of patients with cholestatic liver disease. Bile acid induction of inflammatory genes in hepatocytes is Egr-1 dependent, and Egr-1 expression is increased in livers of mice after bile duct ligation. Of importance, Egr-1 deficiency reduces liver inflammation and injury in that model. However, it is not known whether Egr-1 promotes inflammation in other models of cholestasis. We tested the hypothesis that Egr-1 contributes to liver inflammation in mice exposed chronically to the bile duct epithelial cell (BDEC) toxicant alpha-naphthylisothiocyanate (ANIT). Egr-1-knockout (Egr-1(-/-)) mice and wild-type mice were fed a diet containing 0.025% ANIT for 2 weeks. Expression of Egr-1 mRNA and protein was significantly increased in livers of mice fed ANIT diet. Egr-1 deficiency did not significantly affect ANIT diet-induced hepatocellular injury, inflammatory gene induction, BDEC hyperplasia, or hepatic neutrophil accumulation. In contrast, the deposition of Type 1 collagen was significantly increased in livers of Egr-1(-/-) mice fed ANIT diet compared with wild-type mice fed ANIT diet. Interestingly, this increase in liver fibrosis occurred in association with elevated expression of the β6 integrin (Itgb6) gene, suggesting the potential for increased local activation of transforming growth factor beta. Taken together, the results indicate that Egr-1 does not contribute to liver injury or inflammation in mice fed a diet containing ANIT. Rather, these studies indicate that Egr-1 deficiency worsens liver fibrosis in conjunction with enhanced expression of the profibrogenic Itgb6 gene.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。