MiR-217-5p inhibits smog (PM2.5)-induced inflammation and oxidative stress response of mouse lung tissues and macrophages through targeting STAT1

MiR-217-5p通过靶向STAT1抑制雾霾(PM2.5)诱导的小鼠肺组织和巨噬细胞炎症和氧化应激反应

阅读:4
作者:Jianli Xie, Shaohua Li, Xiaoning Ma, Rongqin Li, Huiran Zhang, Jingwen Li, Xixin Yan

Conclusions

miR-217-5p suppressed the activated STAT1-signal induced inflammation and oxidative stress trigged by PM2.5 in macrophages and resulted in the decreased lung injure caused by PM2.5.

Methods

GEO database and KEGG pathway enrichment analysis as well as GSEA were used to predicted the miRNA and associated target signals. And then mice and RAW246.7 macrophages treated with PM2.5 to imitate PM2.5 induced acute lung injury environment and then transfected with miR-217-5p NC or miR-217-5p mimic. The levels of inflammatory factors TNF-α and anti-inflammatory factor IL-10 of mice serum were tested by ELISA. And the pathological changes and ROS level of mouse lung tissues were stained by HE and DHE staining. The proteins expression of phosphorylated-STAT1, total-STAT1, TNF-α, IFN-γ as well as p47, gp91, NOX4 in mice or RAW264.7 cells were tested by western blot or immunofluorescence of RAW264.7 cell slides.

Objective

To explore the roles of macrophages' miR-217-5p in the process of PM2.5 induced acute lung injury.

Results

The results of bioinformatics analysis indicated the miR-217 as well as STAT1 were involved PM2.5 associated lung injury. After exposure to PM2.5, the decreased levels of serum TNF-α but not IL-10, consistent with reduced macrophages' accumulation as well as decreased ROS levels in lung tissues in miR-217-5p mimic group vs miR-217-5p NC group mice, and moreover, the protein expression levels of phosphorylated--STAT1, total-STAT1, TNF-α, IFN-γ, p47, gp91 and NOX4 in mouse lung tissues and RTAW246.7 macrophages cells were all significantly reduced with miR-217-5p mimic administration. The above phenomena were reversed by specific STAT1-inhibitor HY-N8107. Conclusions: miR-217-5p suppressed the activated STAT1-signal induced inflammation and oxidative stress trigged by PM2.5 in macrophages and resulted in the decreased lung injure caused by PM2.5.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。