Ginsenoside Rb1 protects hippocampal neurons in depressed rats based on mitophagy-regulated astrocytic pyroptosis

人参皂苷 Rb1 通过线粒体自噬调节星形胶质细胞焦亡保护抑郁大鼠的海马神经元

阅读:5
作者:Yannan Li, Junnan Li, Lixuan Yang, Feifei Ren, Kaiqiang Dong, Zhonghui Zhao, Wenzhe Duan, Wei Wei, Rongjuan Guo

Background

Astrocytes play a vital role in offering functional support for neurons, which are related to the pathogenic mechanism of depression. Ginsenoside Rb1 (GRb1) is demonstrated with antidepressant-like activities.

Conclusion

GRb1 modulates mitophagy and the NF-κB pathway to inhibit astrocytic pyroptosis, thereby maintaining neurological homeostasis by repressing inflammation and enhancing synaptic plasticity.

Methods

The mitophagy-mediated antipyroptosis role of GRb1 was assessed in lipopolysaccharide (LPS) + ATP-stimulated astrocytes. The mechanism by which GRb1 protects synaptic plasticity was investigated using hippocampal neurons incubated in an astrocyte medium. The rat depressive-like behaviors were determined through sucrose preference, forced swimming, and the open-field tests. Escitalopram was used in the anti-depression control of GRb1. Cyclosporin A (CsA), a mitophagy inhibitor, and interleukin (IL)-1β were used to reverse the role of GRb1 in mitophagy and pyroptosis, respectively.

Purpose

We aimed to investigate whether GRb1 can inhibit mitophagy-mediated astrocytic pyroptosis to protect neurons in depression. Study design: Model rats were subjected to chronic unpredictable mild stress (CUMS) for determining the in vivo antidepressant activity of GRb1.

Results

GRb1 inhibited LPS-induced inflammation and activation in the astrocytes and repressed nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. Also, GRb1 repressed LPS + ATP-promoted astrocytic pyroptosis. During GRb1 treatment, the activation of mitophagy with a decrease in ROS was observed in LPS + ATPs-stimulated astrocytes. CsA enhanced GRb1-decreased ROS and promoted astrocytic pyroptosis. The GRb1-treated astrocyte medium suppressed neuron death and increased neuron viability and synaptic density. Escitalopram and GRb1 improved the depressive-like behaviors of the rats. GRb1 activated mitophagy and inhibited astrocytic activation and pyroptosis in rats with depression. It also reduced impairments in synaptic structures and increased synaptic density in depressive-like rats. IL-1β increased astrocytic pyroptosis and reversed GRb1-enhanced synaptic plasticity in the rats exposed to CUMS. There were no statistical changes in depressive-like behaviors between GRb1 and Escitalopram groups.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。