Essential Oil from Fructus Alpiniae Zerumbet Protects Human Umbilical Vein Endothelial Cells In Vitro from Injury Induced by High Glucose Levels by Suppressing Nuclear Transcription Factor-Kappa B Signaling

赤小豆精油通过抑制核转录因子 κ B 信号转导保护体外人脐静脉内皮细胞免受高葡萄糖水平引起的损伤

阅读:4
作者:Niwen Huang, Yini Xu, Haiyan Zhou, Dan Lin, Bei Zhang, Yanyan Zhang, Di Pan, Ling Tao, Xingde Liu, Xiangchun Shen

Abstract

BACKGROUND In China, the essential oil of the fruit, Fructus Alpiniae zerumbet (FAZ), is used to treat cardiovascular diseases. Recent in vitro studies have shown that the essential oil of FAZ (EOFAZ) can protect endothelial cells from injury. Because of the prevalence of diabetes mellitus and its effects on the cardiovascular system, the aim of this study was to investigate the mechanism of the effects of EOFAZ on human umbilical vein endothelial cells (HUVECs) treated with high levels of glucose in vitro. MATERIAL AND METHODS The lactate dehydrogenase (LDH) leakage assay was used to detect HUVEC injury. Tumor necrosis factor-alpha (TNF-α), interleukin-8 (IL-8), and nuclear transcription factor-kappa B (NF-κB) p65 subunit DNA-binding activity was detected. The expression of NF-κB pathway-associated proteins, intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) was studied by Western blotting. The cellular location of NF-κB in HUVECs was evaluated using immunofluorescence. RESULTS Cell viability and LDH leakage assays showed that high glucose-induced HUVEC injury was reduced by EOFAZ. High glucose-induced secretion of IL-8, TNF-α, ICAM-1, and VCAM-1 was reduced, and translocation of the p65 subunit of NF-κB to the endothelial cell nucleus was inhibited by EOFAZ. Western blotting confirmed that EOFAZ blocked the activation of NF-κB induced by high glucose levels. EOFAZ reduced high glucose-induced p65/DNA binding to inhibit NF-κB activation. CONCLUSIONS The findings of this in vitro study showed that treatment of HUVECs with EOFAZ had a protective role against the effects of high glucose levels via the NF-κB signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。