Fertilizing benefits of biogenic phosphorous nanonutrients on Solanum lycopersicum in soils with variable pH

生物磷纳米营养素对不同 pH 值土壤中的番茄的施肥效益

阅读:11
作者:Ayushi Priyam, Natasha Yadav, Pallavolu M Reddy, Luis O B Afonso, Aaron G Schultz, Pushplata Prasad Singh

Abstract

Nanoformulations of Phosphorous (P) have recently been proposed as alternatives to P fertilizers. In this study, the fertilizing efficacies of P-based nanomaterials (NMs), nanohydroxyapatite (nHAP) and nanophosphorus (nP), were examined on Solanum lycopersicum (Pusa Rohini, Indian tomato) in growth room pot experiments. These NMs differed in their mode of synthesis, chemical composition, size and shape. Rock-phosphate (RP), phosphoric acid (PA) and di-ammonium phosphate (DAP) were included as bulk materials for comparison. Three varieties of artificial soils were included in the study, neutral (pH 7.2), acidic (pH 4.3) and basic (pH 9.8). The effects of the NMs on germination, plant growth, and P content were assessed at the 15th and 30th days after treatment. The results showed that P-based NMs enhance the overall germination and plant growth by increasing P levels in all types of soils for the tomato plants in comparison to the bulk P sources. Analysis using X-ray fluorescence revealed enhanced P content in the plants indicating the uptake of P-based NMs. Evaluation of H2O2, total phenolics and total flavonoids contents after NM treatment suggest that there is no stress caused due to the application of NMs to the plant. The results of this study indicate the beneficial role of P-based NMs as fertilizers at the early stages of plant development, which opens a scope for further investigation of underlying metabolic and molecular pathways and field trials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。