Crosslinking Effect on Thermal Conductivity of Electrospun Poly(acrylic acid) Nanofibers

交联对电纺聚丙烯酸纳米纤维热导率的影响

阅读:3
作者:Yeongcheol Park, Suyeong Lee, Sung Soo Ha, Bernard Alunda, Do Young Noh, Yong Joong Lee, Sangwon Kim, Jae Hun Seol

Abstract

The thermal conductivity (k) of poly(acrylic acid) (PAA) nanofibers, which were electrospun at various electrospinning voltages, was measured using suspended microdevices. While the thermal conductivities of the as-spun PAA nanofibers varied depending on the electrospinning voltages, the most pronounced 3.1-fold increase in thermal conductivity in comparison to that of bulk PAA was observed at the electrospinning voltage of 14 kV. On the other hand, a reduction in the thermal conductivity of the nanofibers was observed when the as-spun nanofibers were either thermally annealed at the glass transition temperature of PAA or thermally crosslinked. It is notable that the thermal conductivity of crosslinked PAA nanofibers was comparable to that of crosslinked bulk PAA. Polarized Raman spectroscopy and Fourier transform infrared spectroscopy verified that the k enhancement via electrospinning and the k reduction by the thermal treatments could be attributed to the conformational changes between gauche and trans states, which may be further related to the orientation of molecular chains. In contrast, hydrogen bonds did not contribute significantly to the k enhancement. Additionally, the suppression of k observed for the crosslinked PAA nanofibers might result from the shortening of single molecular chains via crosslinking.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。