Identification of copper metabolism-related markers in Parkinson's disease

帕金森病中铜代谢相关标志物的鉴定

阅读:4
作者:Jie Lin, Guifeng Zhang, Bo Lou, Yi Sun, Xiaodong Jia, Meidan Wang, Jing Zhou, Zhangyong Xia0

Conclusions

The study identified nine copper metabolism-related genes as potential therapeutic targets in PD, highlighting their relevance in PD pathology and possible treatment pathways.

Methods

Using bioinformatic analyses, the study identified hub genes related to copper metabolism in PD patients. Differentially expressed genes (DEGs) were identified using the limma package, and copper-metabolism-related genes (CMRGs) were sourced from the Genecard database. Immune cell-related genes were derived through immune infiltration and Weighted Gene Co-expression Network Analysis (WGCNA). Hub genes were pinpointed by integrating DEGs, CMRGs, and immune cell-related genes. Functional analyses included Receiver Operating Characteristic (ROC) analysis, Ingenuity Pathway Analysis (IPA), and networks for miRNA-mRNA-transcription factor (TF), Competitive Endogenous RNA (ceRNA), and hub gene-drug interactions. Validation was performed in cerebrospinal fluid (CSF) samples from PD patients, while in vitro experiments utilized GBE1- overexpressing SH-SY5Y cells to examine cell proliferation, migration, and viability.

Results

Nine hub genes (HPRT1, GLS, SNCA, MDH1, GBE1, DDC, STXBP1, ACHE, and AGTR1) were identified from 753 CMRGs, 416 DEGs, and 951 immune cell-related genes. ROC analysis showed high predictive accuracy for PD, and principal component analysis (PCA) effectively distinguished PD patients from controls. IPA identified 20 significant pathways, and various networks highlighted miRNA, TF, and drug interactions with the hub genes. Hub gene expression was validated in PD CSF samples. GBE1-overexpressing cells displayed enhanced proliferation, migration, and viability. Conclusions: The study identified nine copper metabolism-related genes as potential therapeutic targets in PD, highlighting their relevance in PD pathology and possible treatment pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。