Differential regulation of dopamine transporter function and location by low concentrations of environmental estrogens and 17beta-estradiol

低浓度环境雌激素和17β-雌二醇对多巴胺转运蛋白功能和位置的差异调节

阅读:4
作者:Rebecca A Alyea, Cheryl S Watson

Background

The effects of 17beta-estradiol (E2) and xenoestrogens (XEs) on dopamine transport may have important implications for the increased incidence of neurologic disorders, especially in women during life stages characterized by frequent hormonal fluctuations.

Conclusions

Low levels of environmental estrogen contaminants acting as endocrine disruptors via membrane ERs can alter dopamine efflux temporal patterning and the trafficking of DAT and membrane ERs, providing a cellular mechanism that could explain the disruption of physiologic neurotransmitter function.

Methods

We measured activity of the dopamine transporter (DAT) by the efflux of 3H-dopamine in nontransfected nerve growth factor-differentiated PC12 rat pheochromocytoma cells expressing membrane DAT, ER-alpha, ER-beta, and G-protein-coupled receptor 30. We used a plate immunoassay to monitor trafficking of these proteins.

Objective

We examined low concentrations of XEs [dieldrin, endosulfan, o', p'-dichlorodiphenyl-ethylene (DDE), nonylphenol (NP), and bisphenol A (BPA)] for nongenomic actions via action of membrane estrogen receptors (ERs).

Results

All compounds at 1 nM either caused efflux or inhibited efflux, or both; each compound evoked a distinct oscillatory pattern. At optimal times for each effect, we examined different concentrations of XEs. All XEs were active at some concentration < 10 nM, and dose responses were all nonmonotonic. For example, 10(-14) to 10(-11) M DDE caused significant efflux inhibition, whereas NP and BPA enhanced or inhibited efflux at several concentrations. We also measured the effects of E2/XE combinations; DDE potentiated E(2)-mediated dopamine efflux, whereas BPA inhibited it. In E2-induced efflux, 15% more ER-alpha trafficked to the membrane, whereas ER-beta waned; during BPA-induced efflux, 20% more DAT was trafficked to the plasma membrane. Conclusions: Low levels of environmental estrogen contaminants acting as endocrine disruptors via membrane ERs can alter dopamine efflux temporal patterning and the trafficking of DAT and membrane ERs, providing a cellular mechanism that could explain the disruption of physiologic neurotransmitter function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。