In Vitro Effects of Lead on Gene Expression in Neural Stem Cells and Associations between Up-regulated Genes and Cognitive Scores in Children

铅对神经干细胞基因表达的体外影响以及上调基因与儿童认知评分之间的关联

阅读:7
作者:Peter J Wagner, Hae-Ryung Park, Zhaoxi Wang, Rory Kirchner, Yongyue Wei, Li Su, Kirstie Stanfield, Tomas R Guilarte, Robert O Wright, David C Christiani, Quan Lu

Background

Lead (Pb) adversely affects neurodevelopment in children. Neural stem cells (NSCs) play an essential role in shaping the developing brain, yet little is known about how Pb perturbs NSC functions and whether such perturbation contributes to impaired neurodevelopment. Objectives: We aimed to identify Pb-induced transcriptomic changes in NSCs and to link these changes to neurodevelopmental outcomes in children who were exposed to Pb.

Conclusion

Our findings revealed that Pb induces an NRF2-dependent transcriptional response in neural stem cells and identified SPP1 up-regulation as a potential novel mechanism linking Pb exposure with neural stem cell function and neurodevelopment in children.

Methods

We performed RNA-seq-based transcriptomic profiling in human NSCs treated with 1 μM Pb. We used qRT-PCR, Western blotting, ELISA, and ChIP (chromatin immunoprecipitation) to characterize Pb-induced gene up-regulation. Through interrogation of a genome-wide association study, we examined the association of gene variants with neurodevelopment outcomes in the ELEMENT birth cohort.

Results

We identified 19 genes with significantly altered expression, including many known targets of NRF2-the master transcriptional factor for the oxidative stress response. Pb induced the expression of SPP1 (secreted phosphoprotein 1), which has known neuroprotective effects. We demonstrated that SPP1 is a novel direct NRF2 target gene. Single nucleotide polymorphisms (SNPs) (rs12641001) in the regulatory region of SPP1 exhibited a statistically significant association (p = 0.005) with the Cognitive Development Index (CDI).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。