Identification of the centromeres of Leishmania major: revealing the hidden pieces

大利什曼原虫着丝粒的鉴定:揭示隐藏的碎片

阅读:6
作者:Maria-Rosa Garcia-Silva, Lauriane Sollelis, Cameron Ross MacPherson, Slavica Stanojcic, Nada Kuk, Lucien Crobu, Frédéric Bringaud, Patrick Bastien, Michel Pagès, Artur Scherf, Yvon Sterkers

Abstract

Leishmania affects millions of people worldwide. Its genome undergoes constitutive mosaic aneuploidy, a type of genomic plasticity that may serve as an adaptive strategy to survive distinct host environments. We previously found high rates of asymmetric chromosome allotments during mitosis that lead to the generation of such ploidy. However, the underlying molecular events remain elusive. Centromeres and kinetochores most likely play a key role in this process, yet their identification has failed using classical methods. Our analysis of the unconventional kinetochore complex recently discovered in Trypanosoma brucei (KKTs) leads to the identification of a Leishmania KKT gene candidate (LmKKT1). The GFP-tagged LmKKT1 displays "kinetochore-like" dynamics of intranuclear localization throughout the cell cycle. By ChIP-Seq assay, one major peak per chromosome is revealed, covering a region of 4 ±2 kb. We find two largely conserved motifs mapping to 14 of 36 chromosomes while a higher density of retroposons are observed in 27 of 36 centromeres. The identification of centromeres and of a kinetochore component of Leishmania chromosomes opens avenues to explore their role in mosaic aneuploidy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。