Abstract
Acute ethanol administration increases potent GABAergic neuroactive steroids, specifically (3α,5α)-3-hydroxypregnan-20-one (3α,5α-THP) and (3α,5α)-3,21-dihydroxypregnan-20-one. In addition, neuroactive steroids contribute to ethanol actions. Chronic ethanol exposure results in tolerance to many effects of ethanol, including ethanol-induced increases in neuroactive steroid levels. To determine the mechanisms of tolerance to ethanol-induced increases in neuroactive steroids, we investigated critical signaling molecules that are required for acute ethanol effects. Male Sprague-Dawley rats were administered ethanol via liquid diet for 2 weeks and steroid levels, adrenocorticotrophic hormone (ACTH) and adrenal steroidogenic acute regulatory (StAR) protein expression were measured. Chronic ethanol exposure elicits tolerance to ethanol-induced elevation of serum ACTH and the steroids pregnenolone and progesterone. Surprisingly, chronic ethanol exposure does not result in tolerance to ethanol-induced increases in adrenal StAR protein. However, ethanol-induced StAR phosphorylation is decreased when compared to acute ethanol administration. A separate group of rats exposed to chronic ethanol diet were subsequently challenged with ethanol (2 g/kg) and exhibited a blunted elevation of serum ACTH and progesterone as well as cerebral cortical and hippocampal 3α,5α-THP. Administration of ACTH with the ethanol challenge restored the elevation of serum ACTH and progesterone as well as cerebral cortical 3α,5α-THP levels to those observed in ethanol-naïve rats. Thus, chronic ethanol exposure disrupts ACTH release, which results in tolerance to ethanol-induced increases in neuroactive steroid levels. Loss of the ethanol-induced increases in neuroactive steroids may contribute to behavioral tolerance to ethanol and influence the progression towards alcoholism.
