In Vitro and In Vivo Evaluation of a Bio-Inspired Adhesive for Bone Fixation

仿生骨固定粘合剂的体内外评估

阅读:11
作者:Matthias Schlund, Julien Dartus, Sarah Defrançois, Joël Ferri, Jérôme Delattre, Nicolas Blanchemain, Patrice Woisel, Joël Lyskawa, Feng Chai

Abstract

Compared to metallic hardware, an effective bone adhesive can revolutionize the treatment of clinically challenging situations such as comminuted, articular, and pediatric fractures. The present study aims to develop such a bio-inspired bone adhesive, based upon a modified mineral-organic adhesive with tetracalcium phosphate (TTCP) and phosphoserine (OPS) by incorporating nanoparticles of polydopamine (nPDA). The optimal formulation, which was screened using in vitro instrumental tensile adhesion tests, was found to be 50%molTTCP/50%molOPS-2%wtnPDA with a liquid-to-powder ratio of 0.21 mL/g. This adhesive has a substantially stronger adhesive strength (1.0-1.6 MPa) to bovine cortical bone than the adhesive without nPDA (0.5-0.6 MPa). To simulate a clinical scenario of autograft fixation under low mechanical load, we presented the first in vivo model: a rat fibula glued to the tibia, on which the TTCP/OPS-nPDA adhesive (n = 7) was shown to be effective in stabilizing the graft without displacement (a clinical success rate of 86% and 71% at 5 and 12 weeks, respectively) compared to a sham control (0%). Significant coverage of newly formed bone was particularly observed on the surface of the adhesive, thanks to the osteoinductive property of nPDA. To conclude, the TTCP/OPS-nPDA adhesive fulfilled many clinical requirements for the bone fixation, and potentially could be functionalized via nPDA to offer more biological activities, e.g., anti-infection after antibiotic loading.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。