Functional exploration and drug prediction on programmed cell death-related biomarkers in lung adenocarcinoma

肺腺癌程序性细胞死亡相关生物标志物的功能探索和药物预测

阅读:16
作者:Xugang Zhang, Taorui Liu, Ying Hao, Huiqin Guo, Baozhong Li

Background

Our study aims to perform functional exploration and drug prediction of programmed cell death (PCD)-related biomarkers in lung adenocarcinoma (LUAD).

Conclusion

PCD-related biomarkers in LUAD were explored, which may contribute to further understanding on PCD in LUAD.

Methods

UCSC-Xena obtained LUAD-related genes. DESeq2 screened PCD-specific differentially expressed genes (DEGs), and these DEGs were intersected with genes identified by weighted gene co-expression network analysis (WGCNA) to pinpoint the key genes. KOBAS-i was used for enrichment analysis. String and GeneMania were used to construct protein interaction networks and gene-gene interaction networks, respectively. Using two machine learning algorithms to screen for key genes, and taking the intersection as biomarkers, validating via receiver operating characteristic (ROC) and in vitro experiments. Building a diagnostic model with a nomogram. Construct transcription factor (TF) regulatory network. CIBERSORT was used for immune infiltration analysis. Enrichr predicts targeted drugs and AutodockTools simulates molecular docking.

Results

120 hub genes related to PCD were identified, and an intersection of these genes with DEGs yielded 10 key genes, which were enriched in apoptosis-related pathways. Further machine learning screening of these genes led to the selection of 7 genes, among which 6 genes (FGR, LAPTM5, SIRPA, TLR4, ZEB2, and NLRC4) exhibited significant differences upon ROC validation, ultimately serving as biomarkers, in vitro experiments also confirmed. A nomogram demonstrated their excellent diagnostic performance. These six biomarkers are correlated with the infiltration status of most immune cells, suggesting that they affect LUAD through the immune system. TF regulation analysis identified the upstream miRNAs. Finally, drug prediction yielded three potential drugs: Lenvatinib, methadone, and trimethoprim.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。