Sorption Thermodynamics of CO₂, H₂O, and CH₃OH in a Glassy Polyetherimide: A Molecular Perspective

玻璃态聚醚酰亚胺中 CO₂、H₂O 和 CH₃OH 的吸附热力学:分子视角

阅读:6
作者:Giuseppe Mensitieri, Giuseppe Scherillo, Pietro La Manna, Pellegrino Musto

Abstract

In this paper, the sorption thermodynamics of low-molecular-weight penetrants in a glassy polyetherimide, endowed with specific interactions, is addressed by combining an experimental approach based on vibrational spectroscopy with thermodynamics modeling. This modeling approach is based on the extension of equilibrium theories to the out-of-equilibrium glassy state. Specific interactions are accounted for in the framework of a compressible lattice fluid theory. In particular, the sorption of carbon dioxide, water, and methanol is illustrated, exploiting the wealth of information gathered at a molecular level from Fourier-transform infrared (FTIR) spectroscopy to tailor thermodynamics modeling. The investigated penetrants display a different interacting characteristic with respect to the polymer substrate, which reflects itself in the sorption thermodynamics. For the specific case of water, the outcomes from molecular dynamics simulations are compared with the results of the present analysis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。