The quorum-quenching metallo-gamma-lactonase from Bacillus thuringiensis exhibits a leaving group thio effect

苏云金芽孢杆菌的群体猝灭金属-γ-内酯酶表现出离去基团硫代效应

阅读:11
作者:Jessica Momb, Pei W Thomas, Robert M Breece, David L Tierney, Walter Fast

Abstract

Lactone-hydrolyzing enzymes derived from some Bacillus species are capable of disrupting quorum sensing in bacteria that use N-acyl-l-homoserine lactones (AHLs) as intercellular signaling molecules. Despite the promise of these quorum-quenching enzymes as therapeutic and anti-biofouling agents, the ring opening mechanism and the role of metal ions in catalysis have not been elucidated. Labeling studies using (18)O, (2)H, and the AHL lactonase from Bacillus thuringiensis implicate an addition-elimination pathway for ring opening in which a solvent-derived oxygen is incorporated into the product carboxylate, identifying the alcohol as the leaving group. (1)H NMR is used to show that metal binding is required to maintain proper folding. A thio effect is measured for hydrolysis of N-hexanoyl-l-homoserine lactone and the corresponding thiolactone by AHL lactonase disubstituted with alternative metal ions, including Mn(2+), Co(2+), Zn(2+), and Cd(2+). The magnitude of the thio effect on k(cat) values and the thiophilicity of the metal ion substitutions vary in parallel and are consistent with a kinetically significant interaction between the leaving group and the active site metal center during turnover. X-ray absorption spectroscopy confirms that dicobalt substitution does not result in large structural perturbations at the active site. Finally, substitution of the dinuclear metal site with Cd(2+) results in a greatly enhanced catalyst that can hydrolyze AHLs 1600-24000-fold faster than other reported quorum-quenching enzymes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。