Using a spike-in experiment to evaluate analysis of LC-MS data

使用加标实验来评估 LC-MS 数据分析

阅读:5
作者:Leepika Tuli, Tsung-Heng Tsai, Rency S Varghese, Jun Feng Xiao, Amrita Cheema, Habtom W Ressom

Background

Recent advances in liquid chromatography-mass spectrometry (LC-MS) technology have led to more effective approaches for measuring changes in peptide/protein abundances in biological samples. Label-free LC-MS

Conclusions

The LC-MS data from our spike-in experiment can be used for developing and optimizing LC-MS data preprocessing algorithms and to evaluate workflows implemented in existing software tools. Our current work is a stepping stone towards optimizing LC-MS data acquisition and testing the accuracy and validity of computational tools for difference detection in future studies that will be focused on spiking peptides of diverse physicochemical properties in different concentrations to better represent biomarker discovery of differentially abundant peptides/proteins.

Results

The work in this paper is an initial study to develop a simple model with "presence" or "absence" condition using spike-in experiments and to be able to identify these "true differences" using available software tools. In addition to the preprocessing pipelines, choosing appropriate statistical tests and determining critical values are important. We observe that individual statistical tests could lead to different results due to different assumptions and employed metrics. It is therefore preferable to incorporate several statistical tests for either exploration or confirmation purpose. Conclusions: The LC-MS data from our spike-in experiment can be used for developing and optimizing LC-MS data preprocessing algorithms and to evaluate workflows implemented in existing software tools. Our current work is a stepping stone towards optimizing LC-MS data acquisition and testing the accuracy and validity of computational tools for difference detection in future studies that will be focused on spiking peptides of diverse physicochemical properties in different concentrations to better represent biomarker discovery of differentially abundant peptides/proteins.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。