Regulation of pacemaker frequency in the murine gastric antrum

小鼠胃窦起搏器频率的调节

阅读:10
作者:Tae Wan Kim, Elizabeth A H Beckett, Rhonda Hanna, Sang Don Koh, Tamás Ordög, Sean M Ward, Kenton M Sanders

Abstract

PGE(2) has been linked to the production of gastric arrhythmias such as tachygastria. The interstitial cells of Cajal (ICC) generate electrical rhythmicity in gastrointestinal muscles, and may therefore be a target for PGE(2) in gastric muscles. We cultured ICC from the murine gastric antrum, verified that cells were Kit immunoreactive, and measured spontaneous slow waves. These events were caused by spontaneous inward (pacemaker) currents that were not blocked by nifedipine. Forskolin and 8-bromoadenosine 3':5'-cyclic monophosphate (8-Br-cAMP) reduced the frequency of pacemaker currents in ICC and of slow waves in intact antral muscles. The effects of forskolin and 8-Br-cAMP were not blocked by inhibitors of protein kinase A, suggesting that cAMP has direct effects on pacemaker activity. PGE(2) mimicked the effects of forskolin and 8-Br-cAMP on ICC, but increased slow-wave frequency in intact muscles. Therefore, the chronotropic effects of specific prostaglandin EP receptor agonists were examined. Butaprost and ONO-AE1-329, EP(2) and EP(4) receptor agonists, mimicked the effects of forskolin and 8-Br-cAMP on ICC and intact muscles. Sulprostone (EP(3)>EP(1) agonist), GR63799, and ONO-AE-248 (EP(3) agonists) enhanced the frequencies of pacemaker currents in ICC and slow waves in intact muscles. The effects of sulprostone were not blocked by SC-19220, an EP(1) receptor antagonist. These observations suggest that the positive chronotropic effects of PGE(2) in intact muscles are mediated by EP(3) receptor stimulation. The effects of PGE(2) in intact muscles may be dependent upon the relative expression of EP receptors and/or proximity of receptors to sources of PGE(2).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。