Antimicrobial Peptide TP4 Induces ROS-Mediated Necrosis by Triggering Mitochondrial Dysfunction in Wild-Type and Mutant p53 Glioblastoma Cells

抗菌肽 TP4 通过引发野生型和突变型 p53 胶质母细胞瘤细胞中的线粒体功能障碍来诱导 ROS 介导的坏死

阅读:5
作者:Bor-Chyuan Su, Chieh-Yu Pan, Jyh-Yih Chen

Abstract

Antimicrobial peptide tilapia piscidin 4 (TP4) from Oreochromis niloticus exhibits potent bactericidal and anti-tumorigenic effects. In a variety of cancers, the mutation status of p53 is a decisive factor for therapeutic sensitivity. Therefore, we investigated the impact of p53 status on TP4-induced cytotoxicity in glioblastoma cell lines and the molecular mechanisms that govern cytotoxic effects. Both U87MG (wild-type/WT p53) and U251 (mutant p53) glioblastoma cell lines were sensitive to TP4-induced cytotoxicity. The necrosis inhibitors Necrostatin-1 and GSK'872 attenuated TP4-induced cytotoxicity, and TP4 treatment induced the release of cyclophilin A, a biomarker of necrosis. Moreover, TP4 induced mitochondrial hyperpolarization and dysfunction, which preceded the elevation of intracellular reactive oxygen species, DNA damage, and necrotic cell death in both U87MG and U251 glioblastoma cells. p38 was also activated by TP4, but did not contribute to cytotoxicity. SB202190, a specific p38 inhibitor, enhanced TP4-induced oxidative stress, mitochondrial dysfunction, and cytotoxicity, suggesting a protective role of p38. Furthermore, TP4-induced cytotoxicity, oxidative stress, phosphorylation of p38, and DNA damage were all attenuated by the mitochondrial-targeted reactive oxygen species (ROS) scavenger MitoTEMPO, or the reactive oxygen species scavenger N-acetyl-L-cysteine. Based on these data, we conclude that TP4 induces necrosis in both WT and mutant p53 glioblastoma cells through a mitochondrial ROS-dependent pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。