Electrophysiological properties of human mesenchymal stem cells

人类间充质干细胞的电生理特性

阅读:6
作者:Jürgen F Heubach, Eva M Graf, Judith Leutheuser, Manja Bock, Bartosz Balana, Ihor Zahanich, Torsten Christ, Sabine Boxberger, Erich Wettwer, Ursula Ravens

Abstract

Human mesenchymal stem cells (hMSC) have gained considerable interest due to their potential use for cell replacement therapy and tissue engineering. One strategy is to differentiate these bone marrow stem cells in vitro into cardiomyocytes prior to implantation. In this context ion channels can be important functional markers of cardiac differentiation. At present there is little information about the electrophysiological behaviour of the undifferentiated hMSC. We therefore investigated mRNA expression of 26 ion channel subunits using semiquantitative RT-PCR and recorded transmembrane ion currents with the whole-cell voltage clamp technique. Bone marrow hMSC were obtained from healthy donors. The cells revealed a distinct pattern of ion channel mRNA with high expression levels for some channel subunits (e.g. Kv4.2, Kv4.3, MaxiK, HCN2, and alpha1C of the L-type calcium channel). Outward currents were recorded in almost all cells. The most abundant outward current rapidly activated at potentials positive to +20 mV. This current was identified as a large-conductance voltage- and Ca(2+)-activated K(+) current, conducted by MaxiK channels, due to its high sensitivity to tetraethylammonium (IC(50)= 340 microm) and its inhibition by 100 nm iberiotoxin. A large fraction of cells also demonstrated a more slowly activating current at potentials positive to -30 mV. This current was selectively inhibited by clofilium (IC(50)= 0.8 microm). Ba(2+) inward currents, stimulated by 1 microm BayK 8644 were found in a few cells, indicating the expression of functional L-type Ca(2+) channels. Other inward currents such as sodium currents or inward rectifier currents were absent. We conclude that undifferentiated hMSC express a distinct pattern of ion channel mRNA and functional ion channels that might contribute to physiological cell function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。