Integrative analysis of transcription factors and microRNAs in ovarian cancer cell spheroids

卵巢癌细胞球体中转录因子和微小RNA的整合分析

阅读:6
作者:Hyun Park, Sohyun Hwang, Ju-Yeon Jeong, Sang Geun Jung, Min Chul Choi, Won Duk Joo, Seung Hun Song, Chan Lee, Hee Jung An

Background

Cancer stem cells (CSCs) can self-renew, proliferate into differentiated cells, or enter a quiescent state and are regarded to cause chemoresistance and recurrence. An integrative analysis of transcription factors (TF) and miRNAs was performed in ovarian CSC-enriched spheroid-forming cells (SFCs) to identify factors relevant to ovarian CSCs.

Conclusions

MYC, EGR1, and miR-130a-3p were hubs in our integrative analysis of ovarian CSC-enriched SFCs, suggesting that ovarian cancer SFCs display a stem cell identity with the quiescent phenotype where adhesion- and cell cycle-related genes were suppressed.

Methods

Fresh tumor cells from three ovarian cancer patients were cultured in standard and in selective medium. The mRNAs and miRNAs that exhibited significant differential expression between SFCs and adherent cells were identified using mRNA and miRNAs microarrays. Target genes of miRNAs were further selected if predicted with TargetScan by half of the miRNAs or more. Gene enrichment analysis was performed on over- or under-expressed mRNAs and target genes of miRNAs using DAVID tools. Complex regulatory networks were combined from TF-genes and miRNA-genes interactions using the MAGIA webtool.

Results

A total of 1245 mRNA and 55 miRNAs were differentially expressed (p-value< 0.05, paired t-test). Elevation of transcription-related processes and suppression of focal adhesion pathway were noted in SFCs, according to the enrichment analyses. Transcriptional hyperactivity is a known characteristic of the stem cell transcriptome. The integrative network suggested that cell cycle was arrested in SFCs where over-expressed EGR1 and under-expressed MYC and miR-130a-3p had multiple connections with target genes. Conclusions: MYC, EGR1, and miR-130a-3p were hubs in our integrative analysis of ovarian CSC-enriched SFCs, suggesting that ovarian cancer SFCs display a stem cell identity with the quiescent phenotype where adhesion- and cell cycle-related genes were suppressed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。