Salt Enhances Disease Resistance and Suppresses Cell Death in Ceramide Kinase Mutants

盐增强抗病能力并抑制神经酰胺激酶突变体的细胞死亡

阅读:5
作者:Yu-Bing Yang, Jian Yin, Li-Qun Huang, Jian Li, Ding-Kang Chen, Nan Yao

Abstract

Sphingolipids act as structural components of cellular membranes and as signals in a variety of plant developmental processes and defense responses, including programmed cell death. Recent studies have uncovered an interplay between abiotic or biotic stress and programmed cell death. In a previous study, we characterized an Arabidopsis (Arabidopsis thaliana) cell-death mutant, accelerated cell death5 (acd5), which accumulates ceramides and exhibits spontaneous cell death late in development. In this work, we report that salt (NaCl) treatment inhibits cell death in the acd5 mutant and prevents the accumulation of sphingolipids. Exogenous application of abscisic acid (ABA) and the salicylic acid (SA) analog benzothiadiazole demonstrated that the effect of NaCl was partly dependent on the antagonistic interaction between endogenous SA and ABA. However, the use of mutants deficient in the ABA pathway suggested that the intact ABA pathway may not be required for this effect. Furthermore, pretreatment with salt enhanced the resistance response to biotic stress, and this enhanced resistance did not involve the pathogen-associated molecular pattern-triggered immune response. Taken together, our findings indicate that salt inhibits sphingolipid accumulation and cell death in acd5 mutants partly via a mechanism that depends on SA and ABA antagonistic interaction, and enhances disease resistance independent of pattern-triggered immune responses.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。