Adenoviral gene transfer of endothelial nitric-oxide synthase (eNOS) partially restores normal pulmonary arterial pressure in eNOS-deficient mice

内皮型一氧化氮合酶 (eNOS) 腺病毒基因转移可部分恢复 eNOS 缺陷小鼠的正常肺动脉压

阅读:4
作者:Hunter C Champion, Trinity J Bivalacqua, Stanley S Greenberg, Thomas D Giles, Albert L Hyman, Philip J Kadowitz

Abstract

It has been shown that mice deficient in the gene coding for endothelial nitric-oxide synthase (eNOS) have increased pulmonary arterial pressure and pulmonary vascular resistance. In the present study, the effect of transfer to the lung of an adenoviral vector encoding the eNOS gene (AdCMVeNOS) on pulmonary arterial pressure and pulmonary vascular resistance was investigated in eNOS-deficient mice. One day after intratracheal administration of AdCMVeNOS to eNOS(-/-) mice, there was an increase in eNOS protein, cGMP levels, and calcium-dependent conversion of l-arginine to l-citrulline in the lung. The increase in eNOS protein and activity in eNOS(-/-) mice was associated with a reduction in mean pulmonary arterial pressure and pulmonary vascular resistance when compared with values in eNOS-deficient mice treated with vehicle or a control adenoviral vector coding for beta-galactosidase, AdCMVbetagal. These data suggest that in vivo gene transfer of eNOS to the lung in eNOS(-/-) mice can increase eNOS staining, eNOS protein, calcium-dependent NOS activity, and cGMP levels and partially restore pulmonary arterial pressure and pulmonary vascular resistance to near levels measured in eNOS(+/+) mice. Thus, the major finding in this study is that in vivo gene transfer of eNOS to the lung in large part corrects a genetic deficiency resulting from eNOS deletion and may be a useful therapeutic intervention for the treatment of pulmonary hypertensive disorders in which eNOS activity is reduced.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。