Polymeric Micelles Enhance Mucosal Contact Time and Deposition of Fluocinolone Acetonide

聚合物胶束增强氟轻松丙酮的粘膜接触时间和沉积

阅读:6
作者:Sucharat Limsitthichaikoon, Siriwat Soontaranon, Nuntachai Hanpramukkun, Kanjana Thumanu, Aroonsri Priprem

Abstract

This study used polymeric micelles to improve quality by increasing drug solubility, extending mucosal drug retention time, enhancing mucoadhesiveness, and promoting drug permeation and deposition. Fluocinolone acetonide (FA) was loaded into polymeric micelles (FPM), which were composed of poloxamer 407 (P407), sodium polyacrylate (SPA), and polyethylene glycol 400, and their physicochemical properties were examined. Small-angle X-ray scattering (SAXS) revealed a hexagonal micellar structure at all temperatures, and the concentrations of P407 and SPA were shown to significantly affect the solubility, mucoadhesion, release, and permeation of FPMs. The proportion of P407 to PEG at a ratio of 7.5:15 with or without 0.1% w/v of SPA provided suitable FPM formulations. Moreover, the characteristics of FPMs revealed crystalline states inside the micelles, which was consistent with the morphology and nano-hexagonal structure. The results of ex vivo experiments using focal plane array (FPA)-based Fourier transform infrared (FTIR) imaging showed that the FPM with SPA penetrated quickly through the epithelium, lamina propria, and submucosa, and remained in all layers from 5-30 min following administration. In contrast, the FPM without SPA penetrated and passed through all layers. The FPM with extended mucoadhesion, improved drug-mucosal retention time, and increased FA permeation and deposition were successfully developed, and could be a promising innovation for increasing the efficiency of mouth rinses, as well as other topical pharmaceutical and dental applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。